RU
Каталог

тест математика МЭИ 23 задания по 5 вопросов

Продаж: 14 (последняя 12 дн. назад)
Возвратов: 0

Загружен: 10.01.2014
Содержимое: 40110132054437.rar (185,04 Кбайт)

Описание товара

Задание 1
Вопрос 1. Когда возникла идея о бесконечности числового ряда?
1. В I веке до н.э.
2. Во II веке до н.э.
3. В III веке до н.э.
4. В IV веке до н.э.
5. В V веке до н.э.
Вопрос 2. Какое из чисел не является рациональным?
1.
2. 0.1
3. 0.111.....
4.
5.
Вопрос 3. Какое из чисел не является действительным?
1. е (основание “натуральных логарифмов”)
2.
3.
4.
5.
Вопрос 4. В какой строке свойство кватернионов записано с ошибкой?
1.
2.
3.
4.
5.
Вопрос 5. Какое трансфинитное число получится в результате увеличения трансфинитного числа на 1000000?
1.
2.
3.
4. 1000000
5.
Задание 2
Вопрос 1. Как можно сформулировать основные направления математических исследований в общественных науках?
1. Исследования в области линейного программирования
2. Исследования в области нелинейного программирования
3. Исследования в области экономики
4. Исследования в области кибернетики
5. Исследования в части точного описания функционирования общественных систем и их частей и исследования влияния сознательного воздействия (управления) на функционирование социальных структур и течение соци-альных процессов.
Вопрос 2. Какое предположение лежит в основе использования матрицы коэффициентов выживаемости и рождаемости?
1. Предположение о неизменности выживаемости и рождаемости
2. Предположение об однородной возрастной структуре
3. Предположение о прекращении эпидемий на рассматриваемом временном интервале
4. Предположение об отсутствии войн
5. Предположение об отсутствии стихийных бедствий
...
Задание 23
Вопрос 1. Сколько систем частных решений образуют фундаментальную систему решений системы трех линейных однородных дифференциальных уравнений с постоянными коэффициентами?
1. 1
2. 2
3. 3
4. 4
5. Фундаментальную систему образует одно общее решение системы
Вопрос 2. При каком условии может быть получено частное решение системы линейных однородных дифференциальных уравнений с постоянными коэффициентами, удовлетворяющее любым заданным начальным условиям?
1. Наличие фундаментальной системы решений
2. Непрерывность функций, образующих некоторое частное решение
3. Интегрируемость функций, образующих общее решение
4. Определитель матрицы, строками которой являются частные решения системы дифференциальных уравнений при не обращается в ноль
5. Определитель матрицы, строками которой являются частные решения системы дифференциальных уравнений равен нулю
Вопрос 3. Какой вид имеет частное решение системы линейных однородных дифференциальных уравнений с постоянными коэффициентами в случае действительных и различных корней характеристического уравнения ?
1.
2.
3. , где - постоянные ве-личины
4. , где - постоянные величины
5. Здесь нет частного решения
Вопрос 4. Какой вид имеет частное решение системы двух линейных однородных дифференциальных уравне-ний с постоянными коэффициентами в случае комплексных корней характеристического уравнения ?
1. , где - постоянные величины
2. , где - постоянные величины
3.
4. , где - постоянные величины
5. , где - постоянные величины
Вопрос 5. Под каким номером записано общее решение системы уравнений ?
1.
2.
3. , где - постоянные величины
4. , где - постоянные величины
5. , где - постоянные величины

Дополнительная информация

За Ваши положительные отзывы - мои новые контрольные, практические и тесты по низкой цене!

Отзывы

0
Отзывов от покупателей не поступало.
За последние
1 мес 3 мес 12 мес
0 0 0
0 0 0
В целях противодействия нарушению авторских прав и права собственности, а также исключения необоснованных обвинений в адрес администрации сайта о пособничестве такому нарушению, администрация торговой площадки Plati (http://www.plati.com) обращается к Вам с просьбой - в случае обнаружения нарушений на торговой площадке Plati, незамедлительно информировать нас по адресу support@plati.com о факте такого нарушения и предоставить нам достоверную информацию, подтверждающую Ваши авторские права или права собственности. В письме обязательно укажите ваши контактные реквизиты (Ф.И.О., телефон).

В целях исключения необоснованных и заведомо ложных сообщений о фактах нарушения указанных прав, администрация будет отказывать в предоставлении услуг на торговой площадке Plati, только после получения от Вас письменных заявлений о нарушении с приложением копий документов, подтверждающих ваши авторские права или права собственности, по адресу: 123007, г. Москва, Малый Калужский пер. д.4, стр.3, Адвокатский кабинет «АКАР №380».

В целях оперативного реагирования на нарушения Ваших прав и необходимости блокировки действий недобросовестных продавцов, Plati просит Вас направить заверенную телеграмму, которая будет являться основанием для блокировки действий продавца, указанная телеграмма должна содержать указание: вида нарушенных прав, подтверждения ваших прав и ваши контактные данные (организиционно-правовую форму лица, Ф.И.О.). Блокировка будет снята по истечение 15 дней, в случае непредставления Вами в Адвокатский кабинет письменных документов подтверждающих ваши авторские права или права собственности.

Оплатить с помощью:
с "Правилами покупки товаров" ознакомлен и согласен