Answers to the 48 questions

Pay with:
i agree with "Terms for Customers"
Sold: 0
Refunds: 0

Uploaded: 07.09.2013
Content: 1.zip (712,7 kB)

Description

1. Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
2. Статистическое определение вероятности события и условия его применимости. Пример.
3. Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством). Пример.
4. Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом). Примеры.
5. Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством). Примеры.
6. Формулы полной вероятности и Байеса (с доказательством). Примеры.
7. Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
8. Локальная теорема Муавра–Лапласа, условия ее применимости. Свойства функции f (x). Пример.
9. Асимптотическая формула Пуассона и условия ее применимости. Пример.
10. Интегральная теорема Муавра—Лапласа и условия ее применимости. Функция Лапласа Ф(х) и ее свойства. Пример.
11. Следствия из интегральной теоремы Муавра–Лапласа (с выводом). Примеры.
12. Понятие случайной величины и ее описание. Дискретная случайная величина и закон (ряд) ее распределения. Независимые случайные величины. Примеры.
13. Математические операции над дискретными случайными величинами. Примеры построения законов распределения для kХ, Х2, Х + Y, XY по заданным распределениям независимых случайных величин Х и Y.
14. Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
15. Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
16. Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
17. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
18. Функция распределения случайной величины, ее определение, свойства и график.
19. Непрерывная случайная величина (НСВ). Вероятность отдельно взятого значения НСВ. Математическое ожидание и дисперсия НСВ.
20. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
21. Определение нормального закона распределения. Теоретико_вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
22. Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
23. Формулы для определения вероятности:
а) попадания нормально распределенной случайной величины в заданный интервал;
б) ее отклонения от математического ожидания. Правило «трехсигм».
24. Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
25. Понятие двумерной (n_мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
26. Ковариация и коэффициент корреляции случайных величин. Связь между некоррелированностью и независимостью случайных величин.
27. Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
28. Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
29. Неравенство Чебышева (с выводом) и его частные случаи для случайной величины, распределенной по биномиальному закону, и частости события.
30. Неравенство Чебышева для средней арифметической случайных величин (с выводом).
31. Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
32. Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
33. Вариационный ряд и его разновидности. Средняя арифметическая и дисперсия ряда, упрощенный способ их расчета.
34. Генеральная и выборочная совокупности. Принцип образования выборки. Собственно_случайная выборка с повторным и бесповторным отбором членов. Репрезентативная выборка. Основная задача выборочного метода.
35. Понятие об оценке параме

Feedback

0
No feedback yet.
Period
1 month 3 months 12 months
0 0 0
0 0 0
In order to counter copyright infringement and property rights, we ask you to immediately inform us at support@plati.market the fact of such violations and to provide us with reliable information confirming your copyrights or rights of ownership. Email must contain your contact information (name, phone number, etc.)